March 2017
Volume 69    Issue 3

New integer programming models for tactical and strategicunderground production scheduling

Mining Engineering , 2017, Vol. 69, No. 3, pp. 37-42
King, B.; Goycoolea, M.; Newman, A.



In this paper, we consider an underground production scheduling problem consisting of determining the proper time interval or intervals in which to complete each mining activity so as to maximize a mine’s discounted value while adhering to precedence, activity durations, and production and processing limits. We present two different integer programming formulations for modeling this optimization problem. Both formulations possess a resource-constrained project scheduling problem structure. The first formulation uses a fine time discretization and is better suited for tactical mine scheduling applications. The second formulation, which uses a coarser time discretization, is better suited for strategic scheduling applications. We illustrate the strengths and weaknesses of each formulation with examples.

Please login to access this article.


If you are not an SME member, you can join SME by clicking the button below.