ME home
 
  SME FaceBook SME Twitter SME LinkedIn RSS Feed

Subscriber or
SME Member Log On

WEB-ONLY CONTENT

Go to SME eNEWS

MINING INDUSTRY EVENTS

AIMEX  - Exhibit
Aug 27, 2019 - Aug 29, 2019
6th Internatl Congress on Environment and Soc Resp  - Conference
Sep 4, 2019 - Sep 6, 2019
Future of Mining EMEA 2019  - Conference
Sep 4, 2019 - Sep 5, 2019
Sustainable Mining  - Conference
Sep 4, 2019 - Sep 6, 2019

METAL PRICES


Au
Ag
Pt
Pd
Ni
Cu
Al
Pb

AGGREGATES
AND MINERALS
MARKETPLACE


http://aggregatesmineralsmarketplace.com
The Mining Engineering, SME and NSSGA
Online Buyers Directory Site
The Online Global Mining and Minerals Library Site
June 2019
Volume 71    Issue 6

Influence of temperature on generator current and magnetic field of a proximity detection system

Mining Engineering, 2019, Vol. 71, No. 6, pp. 51-52
Li, Jingcheng; Smith, Adam; Carr, Jacob; Whisner, Bruce


ABSTRACT:

Electromagnetic-based proximity detection systems (PDSs) are used on mining machinery to protect workers from being pinned or struck. These systems generate magnetic fields covering the space around a machine, and a miner-wearable component (MWC) detects the field. The PDS determines the distance of miners relative to the machine based on the detected magnetic flux density in the magnetic field. This information is used to establish warning and shutdown zones around the machine. Maintaining a stable magnetic field is essential for system accuracy. However, components used to generate magnetic fields can be influenced by temperature changes. Depending on ventilation conditions and seasonal alternation, a PDS can be subject to significant temperature fluctuation. To better understand and quantify this phenomenon, researchers from the U.S. National Institute for Occupational Safety and Health (NIOSH) developed an experimental apparatus to study the influence of temperature on magnetic field generator circuits used in PDSs. Results from the study show that the electric current through a generator can be influenced by both ambient and internal temperatures, modifying the magnetic field that is produced. These findings show that temperature can significantly influence the ability of PDSs used in underground coal mines to accurately determine a worker’s position in relation to a mining machine. The study also presents methods to overcome the effects of changing temperatures in the form of an automated feedback control system used to stabilize generator currents.



Please login to access this article.

OR

If you are not an SME member, you can join SME by clicking the button below.