ME home
 
  SME FaceBook SME Twitter SME LinkedIn RSS Feed

Subscriber or
SME Member Log On

WEB-ONLY CONTENT

Go to SME eNEWS

MINING INDUSTRY EVENTS

2017 George A. Fox Conference  - Conference
Jan 23, 2019
2019 SME Annual Conference & Expo  - Conference
Feb 24, 2019 - Feb 27, 2019
CMA 121st Nat'l Western Mining Conference  - Conference
Feb 24, 2019 - Feb 27, 2019
Fuutre of Mining Australia 2019  - Conference
Mar 25, 2019 - Mar 26, 2019

METAL PRICES


Au
Ag
Pt
Pd
Ni
Cu
Al
Pb

AGGREGATES
AND MINERALS
MARKETPLACE


http://aggregatesmineralsmarketplace.com
The Mining Engineering, SME and NSSGA
Online Buyers Directory Site
The Online Global Mining and Minerals Library Site
November 2015
Volume 67    Issue 11

Optimal blast design using a discrete-event simulation model in a hard-rock mine

Mining Engineering, 2015, Vol. 67, No. 11, pp. 47-53
Nageshwaraniyer,, S.S.; Kim, K.M.; Son, Y.J.


ABSTRACT:

This paper reports on the development of a simulation-based framework for obtaining optimal blast design parameters for a hard-rock mine. To do this, a conventional medium-sized hard-rock mine was taken as a case study. The mine has two pits containing hard and soft rock types. The proposed framework contains a combination of regression analysis using Excel software by Microsoft and discrete-event simulation using Arena software by Rockwell Automation, applied to construct a model of the material-handling network of the mine. Specifically, blasting parameters are estimated by Excel-based regression analysis, processes including blasting and haulage from pits to crushers are modeled by a Forward Blasting simulation submodel, and material-handling operations including crushing, storage in stockpile, and haulage via conveyors and into SAG and ball mills are modeled by a Crusher to Ball Mill simulation submodel. A Reverse Blasting submodel is then used to obtain the optimum blast design corresponding to a target P80 particle size. Using the proposed framework, an economic analysis was performed to demonstrate the cost savings that could be realized for each rock type as a function of specific explosive energy.



Please login to access this article.

OR

If you are not an SME member, you can join SME by clicking the button below.