ME home
 
  SME FaceBook SME Twitter SME LinkedIn RSS Feed

Subscriber or
SME Member Log On

WEB-ONLY CONTENT

Go to SME eNEWS

MINING INDUSTRY EVENTS

George Fox Conference  - Conference
Jan 24, 2018
2018 SME Annual Conference & Expo  - Conference
Feb 25, 2018 - Feb 28, 2018
Mongolia Mining 2018  - Conference
Apr 4, 2018 - Apr 6, 2018
USA Pavilion at Expomin 2018  - Exhibit
Apr 23, 2018 - Apr 27, 2018

METAL PRICES


Au
Ag
Pt
Pd
Ni
Cu
Al
Pb

AGGREGATES
AND MINERALS
MARKETPLACE


http://aggregatesmineralsmarketplace.com
The Mining Engineering, SME and NSSGA
Online Buyers Directory Site
The Online Global Mining and Minerals Library Site
March 2015
Volume 67    Issue 3

Simplifying CFD modeling of longwall gobs with a modular meshing approach

Mining Engineering, 2015, Vol. 67, No. 3, pp. 68-72
Gilmore, R.C.; Marts, J.A.; Brune, J.F.; Saki, S.; Bogin, Jr., G.E.; Grubb, J.W.


ABSTRACT:

Computational fluid dynamics (CFD) modeling involves the creation of a computation domain called a mesh or grid to solve the equations defining the physics of fluid flow. This process often comprises the majority of time spent in modeling efforts. In a project sponsored by the U.S. National Institute for Occupational Safety and Health (NIOSH), researchers at the Colorado School of Mines used an innovative meshing approach, allowing easy adaptation of the CFD model to adjust to a variety of longwall bleeder-ventilated and progressively sealed (often referred to as bleederless in the United States) mining geometries, with gob porosity and permeability scalable over a wide range. This paper presents the methodology of the meshing and scaling approach along with recommendations for using CFD modeling in longwall gob ventilation applications. The new meshing technique was utilized to evaluate the function of a back return in a progressively sealed gob and a bleeder-ventilated gob.



Please login to access this article.

OR

If you are not an SME member, you can join SME by clicking the button below.