ME home
 
  SME FaceBook SME Twitter SME LinkedIn RSS Feed

Subscriber or
SME Member Log On

WEB-ONLY CONTENT

Go to SME eNEWS

MINING INDUSTRY EVENTS

George Fox Conference  - Conference
Jan 24, 2018
2018 SME Annual Conference & Expo  - Conference
Feb 25, 2018 - Feb 28, 2018
Mongolia Mining 2018  - Conference
Apr 4, 2018 - Apr 6, 2018
USA Pavilion at Expomin 2018  - Exhibit
Apr 23, 2018 - Apr 27, 2018

METAL PRICES


Au
Ag
Pt
Pd
Ni
Cu
Al
Pb

AGGREGATES
AND MINERALS
MARKETPLACE


http://aggregatesmineralsmarketplace.com
The Mining Engineering, SME and NSSGA
Online Buyers Directory Site
The Online Global Mining and Minerals Library Site
November 2014
Volume 66    Issue 11

Remediation of large-scale slope failures and impact on mine development at the Gold Quarry Mine

Mining Engineering, 2014, Vol. 66, No. 11, pp. 57-57
Sheets, R,J.; Douglas, S,J.; St. Louis, R.M.; Bailey, J.A.


ABSTRACT:

In 2009, the Gold Quarry openpit mine experienced multiple large-scale slope failures of the upper east highwall that reduced gold ore extraction for nearly 18 months. The slope failures occurred within a weak, consolidated sedimentary sequence that exhibits strength characteristics that are transitional between soil and rock. Instability initiated as mining exposed the lower, high plasticity subunits of the Carlin Formation. This deformation created preferential flow paths that allowed ground water from the upper sandy subunits to infiltrate low-permeability, clay-rich subunits, thereby enhancing deformation of the slope toe, which, in turn, destabilized the upper portion of the highwall. The outcome was a 160 m high slope failure that had a lateral run-out of 850 m. The effort to return the pit to ore production required geotechnical and hydrogeological investigations and the preliminary remediation mining activity to be concurrent. This required the development of detailed safety procedures and a requirement to modify the remediation design as new results were obtained. An initial challenge was to mitigate a near vertical, 90 m headscarp with localized, blast-induced slope failures. Back-analyses with numerical modeling software indicated that the failure surface could be shallower, which contradicted the initial failure interpretations. Eventually, drilling results confirmed this alternative failure geometry. The final remediation design incorporated shallower slope geometries and an approximately 3 Mt buttress along the base of the Carlin Formation and bedrock contact to reinforce the subunits with residual strength properties. The results are a stable highwall within the Carlin Formation following nearly 10 years of repeated slope failures, and an example of the necessity to conduct appropriate geotechnical and hydrogeological studies during the early stages of a new layback evaluation or new openpit development.
 



Please login to access this article.

OR

If you are not an SME member, you can join SME by clicking the button below.